Toward Computer-Aided Usability Evaluation for
Evolving Interactive Software

(Position Paper for RAM-SE ’07)

Yonglei Tao
School of Computing and Information Systems
Grand Valley State University
Allendale, Michigan, USA

Abstract — Recurrent redesign on an application’s user interface is driven by changing requirements,
user profiles and experiences, as well as technologies. User interface evolution also has impact to the
application itself, which imposes a great challenge on providing tool support to ensure a smooth
transformation in this process. We in this paper explore the suitability of using an aspect-oriented
approach to computer-aided usability evaluation. Using aspects, a support tool is not only flexible for
collecting data to address diverse usability considerations in the evolution process but also adaptable
to continuous changes in the application. We also discuss our future research on other relevant issues

about such a tool.

1. Introduction

Interactive software evolves along one or more
dimensions during its lifetime, including functionality,
architecture, code, and user interface. Changes in one
dimension often affect, interact, and impact others [1].
As such, the evolution of an interactive application
imposes a great challenge not only on developing the
application itself but also on providing tool support to
ensure a smooth transformation in this process [2].

Usability is a key quality attribute for the success of
interactive applications. A practical solution to building
a usable product is early and ongoing usability
evaluation [3]. In usability evaluation, users use an
application to complete a pre-determined set of tasks.
Information on user behavior with respect to the user
interface is captured and analyzed to determine how
well the user interface supports users’ task completion.
Since evaluation activities such as data collection and
analysis are very time-consuming, tool support is
indispensable [5, 6].

Recurrent redesign on an application’s user interface
is driven by changing requirements, user profiles and
experiences, as well as technologies. Usability
considerations vary in the process of user interface
evolution [4]. As a new feature is introduced, for
example, the attention is focused on the flow of the
basic user-system interaction, including the coordination

of data exchange between the user and the system as
well as the navigational structure. While a new
interaction style is made available to support a particular
user group for effective use of the application, however,
usability considerations largely reflect on physical,
spatial, and visual characteristics of screen elements. A
support tool must be flexible for collecting data at a
level of abstraction that is appropriate to address
specific needs in different stages of the evolution
process.

As the user interface evolves, new windows may be
introduced; existing windows may be combined, split,
or removed; and screen elements may be added,
removed, or replaced. Changes in the user interface
inevitably affect various components in the application
[7]. In Java, for examples, even re-layout of screen
elements requires to alter a few lines of code. Hence, a
support tool must also be adaptable to continuous
changes in the application.

In this paper, we explore the suitability of using an
aspect-oriented approach to computer-aided usability
evaluation. We describe how to use aspects to capture
user interface events that occur when the user interacts
with an application’s user interface. Using aspects for
data collection paves the way for analyzing the acquired
data and identifying potential usability problems. We
also discuss our future research on other relevant issues
about such a tool.

2. Related Work

AOP (Aspect-Oriented Programming) is known as an
effective way of modularizing crosscutting concerns
such as monitoring, tracing, and logging [8, 10]. As far
as we know, using an aspect-oriented approach to
computer-aided usability evaluation, however, does not
seem to have received as much attention as it should
have been, in part due to the gap between the
communities of SE (Software Engineering) and HCI
(Human-Computer Interaction).

Proposals about automatic techniques for capturing
user interface events can be found in the literature [5].
Some of those techniques capture events at the
keystroke or system level regardless of the usability
issues under consideration. Recording data at that level
produces voluminous log files and makes it difficult to
map recorded usage into high-level tasks [6]. Usability-
related information can also be obtained by
instrumenting the target program or its platform.
Because such information does not appear at one
particular place, instrumentation in a traditional way
tends to be distributed throughout the target code [9].
Obviously, techniques as such are inappropriate when
changes in an application occur quite often. Adaptive
techniques, such as AOP, are more promising for our
purposes [10, 11].

Java-style interfaces enhance, facilitate, and even
make possible the flexibility, modifiability, and
extensibility that are highly desirable in object-oriented
design [12]. Interfaces can also improve the quality of
aspect-oriented design [13]. We use interfaces to
expose crosscutting behavior against which aspects are
defined. Using interfaces and aspects jointly provides
the benefit of adaptability for automatic support for
usability evaluation.

3. The MVC Architecture for
Applications

Interactive

The Model-View-Controller architecture (MVC) was
originally designed for applications that provide
multiple views for the same data [15]. It has gradually
become the central feature of modern interactive
applications. Based on the object-oriented principles,
MVC describes an application in terms of three
fundamental abstractions: models, views, and
controllers. Roughly, the model manages application

data, the view is responsible for visual presentation, and
the controller handles input events for views. By
encapsulating the three abstractions into separate
components, MVC minimizes the impact of user
interface changes and increases the reusability of
domain objects.

User interface events are generated as natural
products of the normal operation of an interactive
application, including input events (such as the user
clicking on a command button) and output events (such
as the application bringing up a message box).
Sequences of events result from steps taken by the user
in completing tasks. In MVC, the view and controller
take appropriate actions when they are notified of
corresponding events. Separating the three abstractions
also exposes user interface events within the application.

We in this paper use a GUI (Graphical User
Interface) application AccountManager, adopted from
[14] with modifications, as an example. Briefly, the
application is a Java program intended to manage
several bank accounts for a customer. A text view and a
bar graph view are provided for each account to display
the account information. A pie chart view is provided to
display the customer’s total assets held in all the
accounts. Also a text field and two buttons are provided
for each account, where the former allows the user to
enter an amount and the latter to withdraw and deposit
the input amount, respectively.

3.1 Model and View

Figure 1 is a UML class diagram that illustrates key
classes in the model and view of the application’s MVC
architecture. As shown in Figure 1, class Account is a
model and classes PieChartView, TextView, and
BarGraphView represent three views for an Account.

When an account changes state, all of its views are
notified and updated to reflect the change. A well-
known design pattern, Observer, describes an effective
way to establish such a one-to-many dependency [16].
We use Java’s Observable class and Observer interface
to implement the Observer pattern. As shown in Figure
1, class Account extends class Observable and the three
view classes (i.e.,, PieChartView, TextView, and
BarGraphView) implement interface Observer.

Note that each view defines its own update() method
to refresh its display and the account notifies its views
by invoking their update() methods. As a result, a call to
the update() method for an object of any class in the
Observer-based class hierarchy indicates the occurrence
of an output event.

«nterface» Observable
1.n 1
Observer
+addObserver(o : Observer)
+update() +notifyObservers()
& JPanel +setChanged()

,U“AMA““.

I

I

[

I

[

I

[

I

[

[

[
=

=

Account

I |

[} h

I |

i I

I

: ! : balance : double
|

-name : String
+setBalance(b : double)

PieChartView AbstractView

1

-accounts : List
+addAccount(a : Account)

-acct : Account
+AbstractView(a : Account)

tremoveAccount(a : Account) [+getAccount()
tupdate() +updateDisplay()
+update()
TextView BarGraphView
+updateDisplay() +updateDisplay()

Figure 1: Model and View
3.2 Model and Controller

Due to limited space, we omit the UML class diagram
for the model and controller. In Java, a listener class is
responsible for handling an input event. Application
AccountManager defines two listener classes, one for
executing a transaction for an account when a button is
clicked and the other for validating the user input
entered in a text field. Both listener classes handle the
same type of input events, that is, action events in Java.
Action events originate from the user’s actions with
respect to screen elements such as buttons, menu items,
and text fields. Java provides an ActionListener
interface with method actionPerformed() for handling
action events. Hence, the two listener classes must
implement the ActionListener interface.

Note that each listener class has to define its own
actionPerformed() method for handling an action event.
Application AccountManager notifies a listener of the
user’s action by invoking its actionPerformed() method.
As a result, a call to the actionPerformed() method for
an object of any class that implements the
ActionListener interface indicates the occurrence of an
input event in this application.

4. Data Collection with Aspects

Aspect) is an extension to the Java programming
language [10]. It provides constructs to modularize
crosscutting concerns that would otherwise result in
code scattered over multiple modules. We use the aspect
construct to capture user interface events.

Java-style interfaces are essential to adaptability. An
interface is a collection of method signatures. It defines
a standard protocol to interact with an object without
knowing or caring about what class that object belongs
to. In application AccountManager, interface Observer
specifies a standard way for a model to notify its views
and interface ActionListener for the application to notify
an event listener. We expose crosscutting concerns of
interest through interfaces against which aspects are
defined. Using interfaces allows us to specify
crosscutting behavior without being committed to a
particular class hierarchy. As a result, the dependency of
the aspects code on specific features of the user interface
is loosened.

4.1 Capturing Output Events

In application AccountManager, each view is updated
when being notified of state change in its model. Such a
notification is made through a call to the update()
method for each view. Aspect UpdateView, as declared
below, is intended to capture output events that occur
when views are notified.

import java.awt.*;
import java.util.*;

public aspect UpdateView {
// Pointcut Declaration
pointcut traceUpdate (Object obj)
: cflow (' execution (
void Observer+.update (
Observable, Object)))
&& args (Observable, obj);

I/l Advice Definition
after (Object obj): traceUpdate (obj) {
System.out.printin (obj +
" view updated ");

Aspect UpdateView defines a pointcut
traceUpdate() to capture joint points that make a call to
the update() method for a view. It also defines a piece of
advice to identify the account whose state change causes
the output event. Here, pointcupt traceUpdate() takes an
event argument from the advised joint point and passes
it to the advice, which gives the advice the information
it needs.

In the declaration of pointcut traceUpdate(),
Observer+ means any class that implements the
Observer interface, including both the current and
potential ones. As such, the introduction of a new view
or removal of an existing view has little impact to aspect
UpdateView.

4.2 Capturing Input Events

When the user clicks a button or enters data in a text
field, a listener is notified of the action event. We define
an aspect to capture action events. Basically, this aspect
contains a pointcut to capture joint points that make a
call to method actionPerformed() for a listener. It also
contains a piece of advice that receives an event object
from the advised joint point and uses it to identify the
event source.

We can use such an aspect to capture action events
without having to worry about from which screen
elements they originate or by which handlers they are
handled. Changes in the user interface with respect to
the originating screen elements of the action event, such
as adding or removing a button, will affect the related
handler classes. But they won’t have much impact to
that aspect and it will continue to function as it is
specified.

Note that other types of input events also occur
when the user interacts with the application’s user
interface, such as mouse and key events. Java provides a
listener interface for each type of input event. Similarly,
handler classes and aspects can be specifically defined
to capture other types of input events. Such an addition
does not affect the existing ones in any way. While
action events contribute to usability information at the
application level, mouse and key events contribute
primarily to usability information at a lower level of
abstraction. Use of those aspects selectively would
allow us to address different usability considerations.

When application AccountManager runs with the
aspects described above, a list of input and output events
will display on the screen, showing which button is
clicked, which view is updated, and so forth. Such a list

of events provides the basis for the follow-up activities
in usability evaluation.

5. Summary and Future Research

As demonstrated by the above example, the aspect-
oriented approach is suitable for building a support tool
for usability evaluation. Using aspects not only provides
the advantage of flexibility but also offers the benefit of
adaptability. In addition, using aspects makes possible
not only to collect usability-related information from the
captured events but also to obtain relevant information
available elsewhere in the application, which is helpful
for a meaningful interpretation of certain data.
Compared with some of the existing techniques that
require an additional step to extract appropriate
information from the raw data, the aspect-oriented
approach is more effective.

It is worth noting that although we use Java in the
example application, our approach, which is based on
the notions of MVC, interfaces/abstract classes, and
aspects, is language independent.

In addition to data collection, it is equally important
to provide tool support for data analysis. Analyzing the
acquired data manually would be difficult and tedious
without tool support. In addition to data collection,
relevant issues as listed below require further research:

(1) Identifying tasks and sequences of tasks that the
user is intended to accomplish from the acquired
data. User interface design is centered on tasks (or
use cases) [3]. As a consequence, tasks are a natural
unit of data for analysis purposes. Well-defined
tasks in the requirements specification provide a
basis for identifying tasks. Here, it is important to
separate application-specific knowledge from
general processing logic for the sake of adaptability.
(2) Analyzing data obtained from multiple users to
measure usability attributes of a user interface and
to identify potential issues affecting them. Examples
of quantitative measures include time to complete a
task, task frequencies, range of functions used, and
number of errors or repeated errors. More
importantly, analyzing the acquired data enables us
to find indicators for potential usability problems,
for example, areas in which mistakes were made,
unnecessary or undesirable steps were taken, and
extra assistances (such as undo and on-line help)
were requested. Failure for a (group of) user to
follow a navigational path as expected may indicate

the lack of adequate visual clues for what the user
needs to know. Often, whether or not visual
guidance is adequate depends on the user who uses
the application. Here, a challenge is to find out to
which user group it is adequate and to which one it
is not. We will investigate use of data mining
techniques in this regard.

In addition, Aspect] is classified as a static AOP
system. Static AOP systems allow weaving in aspects at
compile or load-time. On the other hand, the dynamic
AOP systems allow weaving aspects in at run-time. As a
result, programmers can dynamically plug and unplug
an aspect inffrom running software [17]. Obviously, a
dynamic AOP system seems to be more appropriate for
our purposes. It is also an interesting issue that deserves
future attention.

Reference:

[1] M. Lehman and J. Ramil, “Evolution in Software
and Related Areas”, the 2001 International
Workshop on Principles of Software Evolution
(IWPSE), Vienna, Austria.

[2] Harald Gall and Michele Lanza, *“Software
Evolution: Analysis and Visualization”, the 2006
International Conference on Software Engineering
(ICSE), May 20-28, 2006, Shanghai, China.

[3] R. J. Torres, “Practitioner’s Handbook for User
Interface Design and Development”, Pretice-Hall,
2002.

[4] Xavier Ferre, et al., “Usability Basics for Software
Developers”, IEEE Software, January/February
2001, pp.22-29.

[5] Melody Ivory and Marti Hearst, “The State of the
Art in Automating Usability Evaluation of User
Interfaces”, ACM Computing Survey, Vol. 33, No. 4,
December 2001, pp. 470-516.

[6] David Hilbert and David Redmiles, “Extracting
Usability Information from User Interface Events”,
ACM Computing Surveys, 384-421, Vol. 32, No. 4,
Dec. 2000.

[7] Maria Francesca Costabile, et al., "Supporting
Interaction and Co-evolution of Users and Systems",
the 2006 International Conference on Advanced
Visual Interfaces (AVI), May 23-26, 2006, Venezia,
Italy.

[8] Tina Low, “Designing, Modeling and Implementing
a Toolkit for Aspect-oriented Tracing (TAST)”,
Workshop on Aspect-Oriented Modeling with UML,
AOSD °’02, April 2003, Univ. of Twente, The
Netherlands.

[9] Morgan Deters and Ron Cytron, “Introduction to
Program Instrumentation using Aspects”,
Proceedings of the ACM OOPSLA Workshop on
Advanced Separation of Concerns in Object-
Oriented Systems, Tampa Bay, Florida, USA, Oct.
2001.

[10] Ramnivas Laddad, “Aspect] in Action: Practical
Aspect-Oriented Programming”, Manning
Publications Co., 2003.

[11] Yonglei Tao, “Capturing User Interface Events
with Aspects”, Proceedings of the 12" International
Conference on Human-Computer Interaction, LNCS
4553, pp.1171-1180, J. Jacko (Ed.), Springer-Verlag
Berlin Heidelberg 2007.

[12] Peter Coad and Mark Mayfield, “Java Design:
Building Better Apps & Applets”, Prentice Hall,
pp.223-288, 1999.

[13] William Griswold et al., “Modular Software Design
with Crosscutting Interfaces”, IEEE Software,
January/February 2006, pp. 51 — 60.

[14] H. M. Deitel, et al., “Advanced Java 2 Platform:
How to Program”, Prentice-Hall, pp. 85-134, 2002.
[15] Glenn Krasner and Stephen Pope, “A Cookbook for
Using the Model-View-Controller User Interface
Paradigm in Smalltalk-80", JOOP, Aug. / Sept. 1988.

[16] Erich Gamma, et al., “Design Patterns: elements of
Reusable Software Architecture”, Addison-Wesley,
1995.

[17] Yoshiki Sato, et. al., “A Selective, Just-In-Time
Aspect Weaver”, the 2" International Conference on
Generative ~ Programming and Component
Engineering (GPCE ‘03), LNCS 2830, Springer-
Verlag, 2003.

